Arduino Nano 33 BLE Sense Rev2 with headers
An AI enabled board in the shape of the classic Nano board, with all the sensors to start building your next project right away.
Overview
The Arduino Nano 33 BLE Sense Rev2 with headers is Arduino’s 3.3V AI enabled board in the smallest available form factor with a set of sensors that will allow you without any external hardware to start programming your next project, right away.
With the Arduino Nano 33 BLE Sense Rev2, you can:
- Build wearable devices that using AI can recognize movements.
- Build a room temperature monitoring device that can suggest or modify changes in the thermostat.
- Build a gesture or voice recognition device using the microphone or the gesture sensor together with the AI capabilities of the board.
The main feature of this board, besides the complete selection of sensors, is the possibility of running Edge Computing applications (AI) on it using TinyML. Learn how to use the Tensor Flow Lite library following this instructions or learn how to train your board using Edge Impulse.
Tech specs
Microcontroller |
nRF52840 (datasheet) |
Operating Voltage |
3.3V |
Input Voltage (limit) |
21V |
DC Current per I/O Pin |
15 mA |
Clock Speed |
64MHz |
CPU Flash Memory |
1MB (nRF52840) |
SRAM |
256KB (nRF52840) |
EEPROM |
none |
Digital Input / Output Pins |
14 |
PWM Pins |
all digital pins |
UART |
1 |
SPI |
1 |
I2C |
1 |
Analog Input Pins |
8 (ADC 12 bit 200 k samples) |
Analog Output Pins |
Only through PWM (no DAC) |
External Interrupts |
all digital pins |
LED_BUILTIN |
13 |
USB |
Native in the nRF52840 Processor |
IMU |
|
Microphone |
MP34DT06JTR (datasheet) |
Gesture, light, proximity, color |
APDS9960 (datasheet) |
Barometric pressure |
LPS22HB (datasheet) |
Temperature, humidity |
HS3003 (datasheet) |
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
SCHEMATICS IN .PDFDATASHEET IN .PDF
Download the full Pinout diagram as PDF here.
Learn more
Get Inspired
How Arduino Education helped educator James Jones boost students’ 21st century skills and robotics knowledge across 23 middle schools in Orlando, Florida. More and more teachers face the difficulty of instilling the right skills and knowledge, as well as a flexible mindset, that better prepare their students for future career opportunities. “Today, students need to be thinking about careers in middle school,” Jones said. “If students wait until they are juniors or seniors in high school to decide, their options are already getting slim. Finding a direction in middle school allows for research, job shadowing, and internships in high school. This will translate into more jobs that require more of these skills as part of the daily workplace. This way they know what a career really looks like, instead of jumping into a job and finding out that they are miserable.” The challenge: learning about careers you love at a young age Many countries have recently approved changes in their curricula and education systems to allow earlier access to technology in the classroom. In Finland, technology education is not a separate subject but a cross-curricular, interdisciplinary topic studied within various classes. In Florida, the Workforce Education law requires that students explore their career options during grades 6-8, at ages 12 to 14. How Arduino Education helped Jones spent last summer looking for a solution to assist him the following semester. He wanted to think big and reach as many schools as possible in Orange County, so he applied for and won the Title IV grant through the Every Student Succeeds Act (ESSA) program. He used the grant to fund 23 middle schools and chose Arduino Education’s products, CTC GO! Core Module and the Arduino Starter Kit, to improve students’ robotics, programming, and coding skills. “This past summer we ran two weeks of camps for rising eighth-graders. It was a transition camp at our feeder high school,"
FAQs
What is the difference between Rev1 and Rev2?
There has been some changes in the sensor between both revisions:
- Replacement of IMU from LSM9DS1 (9 axis) for a combination of two IMUs (BMI270 - 6 axis IMU and BMM150 - 3 axis IMU).
- Replacement of temperature and humidity sensor from HTS221 for HS3003.
- Replacement of microphone from MP34DT05 to MP34DT06JTR.
Additionally some components and the changes have been done in order to improve the experience of the users:
- Replacement of power supply MPM3610 for MP2322.
- Addition of VUSB soldering jumper on the top side of the board.
- New test point for USB, SWDIO and SWCLK.
Do I need to change my sketch used in the previous revision?
For sketches done using the libraries like LSM9DS1 for the IMU or HTS221 for the temperature and humidity sensor, for the new revision this libraries must be changed to Arduino_BMI270_BMM150 for the new combined IMU and Arduino_HS300x for the new temperature and humidity sensor.