
Overview
Grove-Temperature & Humidity Sensor Pro is a high accuracy temperature and humidity sensor based on the DHT22 module (also known as AM2302 or RHT03). High-cost performance and high precision make it ideal for temperature and humidity monitoring of Arduino and Raspberry Pi, you can also use it to make a thermometer and hygrometer.
The DHT22 includes a capacitive humidity sensor and a high precision temperature sensor. The range of humidity sensor is 0 to 99.9 %RH with ±2% accuracy while the temperature sensor ranges from -40 to 80℃ with ±0.5℃ accuracy. With the help of a built-in 8-bit microcontroller, the DHT22 converts the analog output of those two sensors to the digital signal, and output both temperature and humidity data via a single pin.
Compared with the DHT11, this product has higher precision and wider measurement range, but the usage and code are almost the same. Simply put, if you need higher measurement accuracy, this product will be a better choice.
Tech specs
Item |
Min |
Norm |
Max |
Unit |
VCC |
3.3 |
- |
6 |
V |
Measuring Current Supply |
1 |
- |
1.5 |
mA |
Standby Current Supply |
40 |
- |
50 |
uA |
Measuring range (Humidity) |
5% |
- |
99% |
RH |
Measuring range (Temperature) |
-40 |
- |
80 |
°C |
Accuracy(Humidity) |
- |
- |
±2% |
RH |
Accuracy (Temperature) |
- |
- |
±0.5 |
°C |
Resolution (Humidity) |
- |
- |
0.1% |
RH |
Resolution (Temperature) |
- |
- |
0.1 |
°C |
Repeatability(Humidity) |
- |
- |
±0.3% |
RH |
Repeatability (Temperature) |
- |
- |
±0.2 |
°C |
Long-term Stability |
- |
- |
±0.5% |
RH/year |
Signal Collecting Period |
- |
2 |
- |
S |
Respond Time 1/e(63%) |
6 |
- |
20 |
S |
Get Inspired

Exploring the digital twin synthetic data generation and AI-oriented advancements on real-world shipping operations w/ NVIDIA Omniverse.

The primary appeal of microcontrollers is their versatility. They are, essentially, the embedded equivalent of computers — general purpose devices that can perform a wide range of functions. And to get the most out of a microcontroller, you’ll also want connectivity suitable for your application. That’s why we released the Arduino Nano Matter and YouTuber Mr Innovative has shared a great video illustrating how easy it is to build an energy meter using this new development board. The Nano Matter is based on the powerful Silicon Labs MGM240S, which has an Arm Cortex-M33 processor and support for a number of wireless connectivity options, including 802.15.4 (Zigbee and Thread), Bluetooth® Low Energy 5.3, Bluetooth® Mesh, and Matter. That makes the Nano Matter perfect for smart home and other Internet of Things applications. To demonstrate that, Mr Innovative created an energy meter that would be useful to many people around the world. This unit monitors the power flowing to any device or appliance connected to mains AC power. It displays information about that power consumption on a small OLED screen, and also sends the data over Bluetooth to a connected smartphone for logging. The Nano Matter can’t monitor mains AC voltage directly, so Mr Innovative used a ZMCT103C current transformer for the job. The Arduino receives its power from a 9V battery and the components fit inside a 3D-printed enclosure. A printed sticker label gives that a nice, smooth top finish.