
Arduino Nano Matter
The Arduino Nano Matter stems from a partnership between Arduino and Silicon Labs® to make Matter®, one of the most popular IoT connectivity standards for smart home devices, accessible to all.
Overview
Nano Matter merges Arduino’s signature ease of use with with the powerful Silicon Labs® MGM240S, wrapping the best of two worlds into one of the smallest form factors currently on the market. Experimenting with Matter-compatible devices has never been easier!
With Nano Matter, makers – at all levels of expertise – can leverage the popular Matter IoT connectivity standard to build interactive solutions, upgrade previous Nano-based projects to fully function as smart home devices, and even experiment with protocols like Zigbee® and OpenThread.
Key benefits include:
- Matter-ready for quick prototyping, thanks to hardware support and a user-friendly software layer.
- Based on the MGM240SD22VNA from Silicon Labs, a 32-bit Arm® Cortex®-M33.
- Secure Vault™ technology: enjoy industry-leading, state-of-the art security from Silicon Labs against escalating IoT threats.
- Multiprotocol connectivity enables 802.15.4 (Thread) and Bluetooth® Low Energy
- Nano-family compact size and pinout.
- Debugging over USB via SWD interface: no external debugging probe needed!
- Low energy consumption, designed for battery powered IoT devices.
Need Help?
Check the Arduino Forum for questions about the Arduino Language or how to make your own Projects with Arduino. If you need any help with your product, please contact the official Arduino User Support through our Contact us page.
The Matter Color Light will be the only officially Matter-certified profile for the Nano Matter. Currently under certification.
Tech specs
Microprocessor | MGM240SD22VNA (32-bit Arm® Cortex®-M33 with DSP instruction and FPU) |
Connectivity | 802.15.4 (Thread), Bluetooth® Low Energy 5.3, Bluetooth® Mesh, Matter-ready Smart Home Connectivity |
Memory | 1536 kB Flash, 256 kB RAM |
USB Connector | USB-C® |
Security | Secure Vault™ High |
Debugging | Over USB |
UART | 2 |
I2C | 2 |
SPI | 2 |
Digital I/O | 22 |
Analog Inputs | 20 (12 bits resolution) |
DAC | 4 (8-12 bits resolution) |
PWM pins | 22 (A maximum of 5 pins simultaneously) |
External interrupts | Available within all Digital pins |
User Interface | On-board RGB LED, User pushbutton |
Circuit operating voltage | 3.3 V |
Input Voltage (VIN) | 5 V |
Source Current per I/O Pin | 40 mA |
Sink Current per I/O Pin | 28 mA |
Clock Speed | 78 MHz |
Antenna On-board | 2.4 GHz |
Dimensions | 18x45 mm |
Environmental Temperature | -40 °C to + 85 °C |
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
Learn more
Get Inspired

… In partnership with Campus Store Academy, this informative workshop will walk you through implementing Arduino in the classroom with Arduino CTC 101. Register here. Saturday, October 13th 11:30am - 12:30pm (Pavilion 7 - Room 7): Arduino MKR Vidor: Democratizing FPGA: Led by Martino Facchin, Arduino Senior HW Engineer, this session will discuss how the MKR Vidor combines the power and flexibility of an FPGA with the ease of use of Arduino. More info here. 11:45am - 12:45pm (Pavilion 9 - Room 11): In partnership with Campus Store Academy, this informative workshop will walk you through implementing Arduino in the classroom with Arduino CTC 101. Register here. 2:15pm - 3:15pm (Pavilion 7 - Room 7) Arduino IoT Cloud: The Internet of Things Revolution: Luca Cipriani, Arduino CIO, will focus on the potential of the Arduino IoT Cloud, the latest developments in the Arduino ecosystem, as well as how to build connected objects in a quick, easy, and secure manner. More info here. 4:15pm - 5:15pm ( Pavilion 9 - Room 13): Arduino Engineering Kit: Advanced Programming and Learning Applications: In collaboration with Campus Store Academy, this workshop is concentrated on helping tomorrow’s engineers approach mechatronics and automated control. Register here. 5:45pm - 6:45pm ( Pavilion 9 - Room 11): STEAM with Arduino: In collaboration with Campus Store Academy, this session will introduce you to the Arduino Starter Kit Classroom Pack and how Arduino is being used as a flexible learning tool. More info here. Sunday, October 14th 2:45pm - 3:45pm: Shape Your Future with MATLAB and the Arduino Engineering Kit: In collaboration with the MathWorks team and Jose Garcia, HW Engineer at Arduino, this talk will feature live demos of a robot designed and controlled with Arduino and MATLAB. More info here. 4:15am - 5:45pm (Pavilion 9 - Room 11): CTC: Bring Open-Source into Your Classroom: In partnership with Campus Store Academy, this informative workshop will walk you through