
HM0360 VGA Monochrome DVP Camera Module for Arduino GIGA R1 WiFi Board
Low light sensitive, ultralow power consumption, simple interface, compatibility with Arduino libraries, suitable for battery-powered and energy-efficient applications.
Overview
The camera module is based on HM0360 VGA image sensor, which is an ultralow power, Back Side Illuminated (BSI) CMOS sensor designed for energy efficient smart vision applications, such as object-specific classification, tracking, and identification. The VGA resolution is ideal for monitoring, detection and image capture for wide field of view camera devices.
The low consumption camera module is equipped with a 64°(DFOV) stock Lens. It supports 8-bit RAW output format. The standrad operating temperature is between -30~85℃, with the stable Image temp. between 0~50℃.
It is fully compatible with Arduino GIGA R1 WiFi board, a professional-grade microcontroller development board recently launched by Arduino. Seamlessly integrates with our camera module, unlocking versatile image capture and processing capabilities. Harness the power of Arduino GIGA R1 WiFi and gain a competitive edge in your projects.
Features:
- Cost-Effective: Affordable solution for implementing visual capabilities in cost-sensitive projects.
- Compact Size: Compact form factor enables integration into space-constrained applications.
- Simplify Embedded Vision for All: Easy to set up and operate. Making it possible to add machine vision to your GIGA R1 WiFi board without much effort at all.
- High Precision: With on chip high precision oscillator, Bad Pixel correction(BPC), auto exposure/gain, amblent light sensor and zone detection
- Low Power Consumption: Efficient power usage, making it suitable for battery-powered and energy-efficient applications.
Tech specs
Image Sensor | HM0360 |
Resolution | VGA |
Optical Size | 1/6'' |
Number of effective pixels | 640(H) × 480(V) |
Pixel Size | 3.6μm × 3.6μm |
Support Platform | Arduino GIGA R1 WiFi Board |
Shutter Type | Electronic Rolling Shutter |
Color Filter Array | Monochrome |
Frame Rate | 640x480@15fps, 320x240/160x120@30fps |
Output Format | RAW8/RAW4 |
F.NO | 2.8±5% |
Focus Type | Fixed Focus |
Focal Length | 2.59mm |
Field of View(FOV) | 64°(D) |
Power Supply | AVDD: 2.8V; DOVDD: 1.8V; DVDD: 1.2V |
Operating Temperature | -30~85℃ |
Camera Board Size | 30.5mm x 30.5mm |
Documentation
Get Inspired

Launched back in January 2019 in partnership with Google, the Arduino Science Kit Physics Lab is designed for middle school students (aged 11 to 14) to explore science. It is now available with Italian and Spanish course content, making it more accessible than ever. “You discovered it yourself, so it was really fun doing that.” - UK student from ARK Burlington Danes Academy The Arduino Science Kit Physics Lab requires no prior electronics knowledge. It features online course content and equipment to conduct and test the fundamental laws of traditional physics through nine exciting science projects inspired by popular fairground rides like the Gravitron and Pirate Ship. It is perfect for developing transferable skills such as critical thinking and problem solving through an inquiry-based learning approach. Students will experiment with forces, motion, magnetism, and conductivity — making their own hypothesis like real scientists, checking their assumptions, and logging data in real-time using Google’s Science Journal for Android. “Makes it more accessible for students to do practical physics.” - Graeme Wood, Physics teacher at ARK Burlington Danes Academy Incredibly easy to get started, students simply connect their Android mobile device to the board, build their project, and then use the onboard sensor and plug-and-play modules to simulate the rides’ dynamics. Data is transmitted from the experiment to the student's mobile device via Bluetooth, where they can analyse and record their results in Google’s Science Journal App or worksheets. The Arduino Education Science Kit Physics Lab isn't confined to the classroom. In fact, students can use the kit outdoors to turn the playground into their very own fairground by applying the concepts they've learned to design and test their own rides. Based upon the Arduino MKR WiFi 1010, it is a fully portable lab including a range of sensors to measure light, temperature, motion, and