
Overview
Designed for industrial and smart agriculture applications, the Arduino Edge Control Enclosure Kit is the perfect companion for Arduino Edge Control. It provides the module with a sturdy case that protects it from the elements, dust, and accidental blows. It is IP40-certified and compatible with DIN rails, making it safe and easy to fit in any standard rack or cabinet.
On top of this, the Arduino Edge Control Enclosure Kit features a 2-row/16-character LCD display with white backlight and a programmable push button, so it can be customized by users to instantly visualize sensor data, such as weather conditions and soil parameters. Different data can be displayed at every push of the button, on the spot and in real time, without requiring connectivity.
Key benefits include:
- Sturdy and compact protective case for outdoor/industrial use
- Easy installation and organization in racks or cabinets
- IP40-certified protection
- LCD display to instantly check sensor data on location
- Customizable push button to view different data in rotation
- Monitor data even when the connection is unavailable or unreliable
Ready to get started with the Edge Control Enclosure Kit? Read the product datasheet, tutorials and documentation on Arduino Docs.
*The boards/shields are not included in the product: Pictures shown are for illustration purposes only.
Arduino Edge Control
The Edge Control is Arduino Pro’s remote monitoring and control solution, optimized for outdoor environments. Find out more.
Arduino IoT Cloud
Integrating with Arduino’s IoT Cloud is a simple and fast way to ensure secure communication for all of your connected Things.
TRY THE ARDUINO IOT CLOUD FOR FREE
Need Help?
Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. If you need any help with your board, please get in touch with the official Arduino User Support as explained in our Contact Us page.
Warranty
You can find your board warranty information here.
Tech specs
Interfaces |
|
Included components |
|
Dimensions | 110x90x60 mm |
Weight | 165 g |
Ingress Protection | IP40 |
Operating Temperatures | -40° C to +85° C (-40° F to 185°F) |
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Get Inspired

Build a cool display with the Arduino Giga Display - showcases using LVGL to show a graph of the on board mic, imu sensor and rgb led

The EV (electric vehicle) versus ICE (internal combustion engine) debate is more complicated that it may seem, but one fact is quite simple: it is much easier to generate electricity at home than it is to refine fossil fuels. This means that it is possible power a vehicle for free after the initial investment. But doing so takes quite a lot of hardware, which is why Shawn Murphy developed this charging system controlled by an Arduino GIGA R1 WiFi. Murphy owns a Ford Lightning electric pickup truck, which is inefficient by EV standards thanks to its weight. But even at just two miles per kWh of electricity, he estimates that he can break even on the cost of his solar charging system within four to five years. After that, the electricity to power the Ford will, essentially, be free. Any excess energy can power his home or feed back into the grid. Just powering the truck alone will require a lot of electricity, so Murphy acquired 10 used 360-watt solar panels. Those feed to a battery backup array, which supplies power to the Ford charging station. To maximize efficiency, Murphy wants the solar panels to pivot on one axis to follow the sun. He estimates that will increase their output by 20-25% throughout the day, which is a significant amount of energy with a solar panel array this large. An Arduino GIGA R1 WiFi board controls the tilt of the panels via linear actuators. Murphy originally used “dumb” actuators, but is switching to “smart” models from Progressive Automations that include positional feedback through Hall effect sensors. A GIGA Display Shield gives Murphy access to an interface, which he can also access through the Arduino Cloud. In addition to controlling the linear actuators, the Arduino monitors power generation and consumption. This is still a work in progress as Murphy continues to make improvements, but he’s well on his way to “free” energy for his truck.