
Grove - Temp & Humi & Barometer Sensor (BME280)
Grove - Barometer Sensor (BME280) is a breakout board for Bosch BMP280 high-precision, low-power combined humidity, pressure, and temperature sensor.
Overview
This module can be used to measure temperature, atmospheric pressure and humidity accurately and fast. As the atmospheric pressure changes with altitude, it can also measure approximate altitude of a place. It can be connected to a microcontroller with I2C (integrated with Grove socket) or through the SPI bus. There is also provided highly abstracted library to make the product easier to use.
The BME280 is an upgraded version of BMP180, and BME280 gets dramatic improvements from BMP180. BME280 comes with a smaller footprint, lower power consumption, lower noise measurements, higher resolutions for pressure and temperature, lower RMS noise, newly added SPI bus, more measuring modes, higher measuring rate, and newly added filter against environmental interference. Since the atmosphere pressure reading is affected by altitude and temperature, we have added compensation features.
Hence, Grove - Barometer Sensor (BME280) will be more reliable in providing precise temperature, atmospheric pressure values, humidity and approximate altitude data.
Features:
- Get more precise temperature, atmospheric pressure values, humidity and approximate altitude data fast.
- Grove compatible for ease to use
- Highly abstracted library for building projects quicke
Tech specs
Parameter |
Value |
Input voltage |
3.3V or 5V |
I/O voltage |
3.3V or 5V |
Operating current |
0.4mA |
Operating temperature |
-40 - 85 ℃ |
Atmospheric pressure sensor measurement range |
300 - 1100 hPa (1 hPa= one hundred Pa) with ±1.0 hPa accuracy |
Temperature sensor measurement range |
-40 - 85 ℃, with ±1.0°C accuracy |
Humidity sensor measurements range |
0% - 100% relative humidity , with ±3% accuracy |
Measurement modes |
Piezo & Temperature, forced or periodic |
Chip |
BME280(datasheet) |
Interface Bus |
SPI, I2C (use either one of them) |
Weight |
3.2 g (for breakout board), 9.3 g for whole package each piece |
Dimensions |
40 (length) × 20 (width) mm |
Note:
The altitude is calculated by a combination of temperature and atmospheric pressure. There is no specialized components for altitude measurement.
Get Inspired

For children who experience certain developmental delays, specific types of physical therapies are often employed to assist them in improving their balance and motor skills/coordination. Ivan Hernandez, Juan Diego Zambrano, and Abdelrahman Farag were looking for a way to quantify the progress patients make while simultaneously presenting a gamified approach, so they developed a standalone node for equilibrium evaluation that could do both. On the hardware side of things, an Arduino Nano BLE 33 Sense Rev2 is responsible for handling all of the incoming motion data from its onboard BMI270 six-axis IMU and BMM150 three-axis magnetometer. New readings are constantly taken, filtered, and fused together before being sent to an external device over Bluetooth Low Energy. The board was also connected to a buzzer and buttons for user inputs, as well as an RGB LED to get a real-time status. The patient begins the session by first putting on the wearable and connecting to the accompanying therapist application. Next, a game starts in which the user must move their torso to guide an image of a shark over the image of a stationary fish within a time period — ultimately trying to get the highest score possible. Throughout all of this, a vision system synchronizes its readings with the IMU sensor readings for an ultra-detailed look at how the patient responds to the game over time. To read more about the project, you can visit the team's write-up on Hackaday.io.