Arduino Tiny Machine Learning Kit
Ever wondered how to build a small intelligent device that reacts to sounds like a keyword being spoken, recognizes gestures like waving a magic wand, or even recognize faces? With this kit combined with the power of Tiny Machine Learning (TinyML) you can do all of that and much more! We want to show you how these possibilities can be part of your own tiny smart device!
Overview
The Tiny Machine Learning Kit, combined with the exciting TinyML Applications and Deploying TinyML on Microcontrollers courses that are part of the Tiny Machine Learning (TinyML) specialization from EdX will equip you with all the tools you need to bring your ML visions to life!
The kit consists of a powerful board equipped with a microcontroller and a wide variety of sensors (Arduino Nano 33 BLE Sense*). The board can sense movement, acceleration, rotation, barometric pressure, sounds, gestures, proximity, color, and light intensity. The kit also includes a camera module (OV7675) and custom Arduino shield to make it easy to attach your components and create your very own unique TinyML project. You will be able to explore practical ML use cases using classical algorithms as well as deep neural networks powered by TensorFlow Lite Micro. The possibilities are limited only by your imagination!
“The Future of Machine Learning is Tiny and Bright. We’re excited to see what you’ll do!”
Prof. Vijay Janapa Reddi, Harvard University and Pete Warden, Google
*For us to be able to have this kit back in stock we produced a Nano 33 BLE Sense without the HTS221 sensor (temperature and humidity), this change does not affect this kit’s usage and/or content experience. This board is fully compatible with the kit’s documentation.
Tech specs
The Tiny Machine Learning Kit includes:
- 1 Arduino Nano 33 BLE Sense board
- 1 OV7675 Camera
- 1 Arduino Tiny Machine Learning Shield
- 1 USB A to Micro USB Cable
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
Get Inspired
Max out the digital I/O on the Arduino Uno Rev3!
Although we recently launched the new 32-bit Arduino UNO R4, Clem Mayer wanted to honor its 8-bit predecessor by making something special using the Rev3. Drawing on old hardware designs, the ZX-81 is an 8-bit computer based on the Z80 processor which has 1KB of RAM and 1KB of EEPROM available for the user to utilize within the operating environment — typically a BASIC interpreter shell. Similarly, Mayer wanted to have one ATmega328P run the TinyBASIC interpreter while a secondary ATmega328P would handle the external keyboard and display due to resource constraints. The PCB was designed to fit within the form factor of a standard event badge, complete with a small multiplexed keyboard and a 20x4 monochrome LCD screen to fit the retro theme. On the back layer of the board are both AVR MCUs in a surface-mount package to save on space along with a pair of battery holders and a buzzer/power delivery circuitry. Although the code was working for the most part, Mayer still encountered a couple of problems which he solved mainly through bodges and ensuring the LCD was producing adequate contrast. Once the hardware was functioning as intended, he 3D-printed a case and turned it into a lanyard-attached device — complete with blinky lights and a highly interactive interface. The finished handheld computer badge is a testament to the power and versatility of the Arduino Uno R3. By utilizing all available pins and space on the chip, Clem successfully transforms the Arduino Uno into a handheld computer with capabilities like the ZX-81. The project serves as a fitting tribute to the beloved Arduino UNO R3 and showcases the potential for DIY electronics with microcontrollers. To see more on this project, be sure to watch Mayer's video below!