
Overview
Designed for industrial and smart agriculture applications, the Arduino Edge Control Enclosure Kit is the perfect companion for Arduino Edge Control. It provides the module with a sturdy case that protects it from the elements, dust, and accidental blows. It is IP40-certified and compatible with DIN rails, making it safe and easy to fit in any standard rack or cabinet.
On top of this, the Arduino Edge Control Enclosure Kit features a 2-row/16-character LCD display with white backlight and a programmable push button, so it can be customized by users to instantly visualize sensor data, such as weather conditions and soil parameters. Different data can be displayed at every push of the button, on the spot and in real time, without requiring connectivity.
Key benefits include:
- Sturdy and compact protective case for outdoor/industrial use
- Easy installation and organization in racks or cabinets
- IP40-certified protection
- LCD display to instantly check sensor data on location
- Customizable push button to view different data in rotation
- Monitor data even when the connection is unavailable or unreliable
Ready to get started with the Edge Control Enclosure Kit? Read the product datasheet, tutorials and documentation on Arduino Docs.
*The boards/shields are not included in the product: Pictures shown are for illustration purposes only.
Arduino Edge Control
The Edge Control is Arduino Pro’s remote monitoring and control solution, optimized for outdoor environments. Find out more.
Arduino IoT Cloud
Integrating with Arduino’s IoT Cloud is a simple and fast way to ensure secure communication for all of your connected Things.
TRY THE ARDUINO IOT CLOUD FOR FREE
Need Help?
Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. If you need any help with your board, please get in touch with the official Arduino User Support as explained in our Contact Us page.
Warranty
You can find your board warranty information here.
Tech specs
Interfaces |
|
Included components |
|
Dimensions | 110x90x60 mm |
Weight | 165 g |
Ingress Protection | IP40 |
Operating Temperatures | -40° C to +85° C (-40° F to 185°F) |
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Get Inspired

For children who experience certain developmental delays, specific types of physical therapies are often employed to assist them in improving their balance and motor skills/coordination. Ivan Hernandez, Juan Diego Zambrano, and Abdelrahman Farag were looking for a way to quantify the progress patients make while simultaneously presenting a gamified approach, so they developed a standalone node for equilibrium evaluation that could do both. On the hardware side of things, an Arduino Nano BLE 33 Sense Rev2 is responsible for handling all of the incoming motion data from its onboard BMI270 six-axis IMU and BMM150 three-axis magnetometer. New readings are constantly taken, filtered, and fused together before being sent to an external device over Bluetooth Low Energy. The board was also connected to a buzzer and buttons for user inputs, as well as an RGB LED to get a real-time status. The patient begins the session by first putting on the wearable and connecting to the accompanying therapist application. Next, a game starts in which the user must move their torso to guide an image of a shark over the image of a stationary fish within a time period — ultimately trying to get the highest score possible. Throughout all of this, a vision system synchronizes its readings with the IMU sensor readings for an ultra-detailed look at how the patient responds to the game over time. To read more about the project, you can visit the team's write-up on Hackaday.io.