
Arduino Nano 33 BLE Sense Rev2
An AI enabled board in the shape of the classic Nano board, with all the sensors to start building your next project right away.
Overview
The Arduino Nano 33 BLE Sense Rev2 is Arduino’s 3.3V AI enabled board in the smallest available form factor with a set of sensors that will allow you without any external hardware to start programming your next project, right away.
With the Arduino Nano 33 BLE Sense Rev2, you can:
- Build wearable devices that using AI can recognize movements.
- Build a room temperature monitoring device that can suggest or modify changes in the thermostat.
- Build a gesture or voice recognition device using the microphone or the gesture sensor together with the AI capabilities of the board.
The main feature of this board, besides the complete selection of sensors, is the possibility of running Edge Computing applications (AI) on it using TinyML. Learn how to use the Tensor Flow Lite library following this instructions or learn how to train your board using Edge Impulse.
Tech specs
Microcontroller |
nRF52840 (datasheet) |
Operating Voltage |
3.3V |
Input Voltage (limit) |
21V |
DC Current per I/O Pin |
15 mA |
Clock Speed |
64MHz |
CPU Flash Memory |
1MB (nRF52840) |
SRAM |
256KB (nRF52840) |
EEPROM |
none |
Digital Input / Output Pins |
14 |
PWM Pins |
all digital pins |
UART |
1 |
SPI |
1 |
I2C |
1 |
Analog Input Pins |
8 (ADC 12 bit 200 k samples) |
Analog Output Pins |
Only through PWM (no DAC) |
External Interrupts |
all digital pins |
LED_BUILTIN |
13 |
USB |
Native in the nRF52840 Processor |
IMU |
|
Microphone |
MP34DT06JTR (datasheet) |
Gesture, light, proximity, color |
APDS9960 (datasheet) |
Barometric pressure |
LPS22HB (datasheet) |
Temperature, humidity |
HS3003 (datasheet) |
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
Learn more
Get Inspired

Stephen Hawking once said, “No one undertakes research in physics with the intention of winning a prize. It is the joy of discovering something no one knew before.” That joy is exactly what we hope to ignite with Arduino’s Science Kit R3, bridging theory with practical exploration with a complete toolbox that science teachers can use to develop hands-on and engaging STEM experiments in the classroom. From the relationship between color and temperature to the effects of electrical currents on magnetic fields, the kit provides a comprehensive learning experience that allows students to interact with the very core of scientific investigations – also through real-time data collection and analysis. By measuring, recording, and interpreting data with the Arduino Science Journal app, the learning process becomes interactive and dynamic. So, how does the Science Kit R3 make physics the coolest subject in school? Enhanced understanding of physics: No more passive reading. Dive deep into physics, understanding complex concepts through hands-on experimentation.Promotion of scientific literacy: The real-time data collection and analysis features nurture scientific inquiry skills, priming students to thrive in our data-driven world.User-friendly design: No prior coding or electronics knowledge is required, ensuring educators and students can jump straight into experiments with minimal setup.Designed for education: The kit has been designed with teachers, for teachers and students.Critical thinking stimulation: The kit’s design encourages students to apply what they've learned to real-world situations, sharpening their problem-solving abilities.Self-directed learning: Through open-ended investigations, we're giving students the reins, allowing their curiosity to guide their learning process.Comprehensive teaching support: The Science Kit R3 isn’t just for students. We've also equipped educators with an intuitive guide to streamline the teaching
FAQs
What is the difference between Rev1 and Rev2?
There has been some changes in the sensor between both revisions:
- Replacement of IMU from LSM9DS1 (9 axis) for a combination of two IMUs (BMI270 - 6 axis IMU and BMM150 - 3 axis IMU).
- Replacement of temperature and humidity sensor from HTS221 for HS3003.
- Replacement of microphone from MP34DT05 to MP34DT06JTR.
Additionally some components and the changes have been done in order to improve the experience of the users:
- Replacement of power supply MPM3610 for MP2322.
- Addition of VUSB soldering jumper on the top side of the board.
- New test point for USB, SWDIO and SWCLK.
Do I need to change my sketch used in the previous revision?
For sketches done using the libraries like LSM9DS1 for the IMU or HTS221 for the temperature and humidity sensor, for the new revision this libraries must be changed to Arduino_BMI270_BMM150 for the new combined IMU and Arduino_HS300x for the new temperature and humidity sensor.