

Overview
The Portenta H7 Lite is a cost-effective solution, designed for complex environments where radio communication is not suitable or possible. It is perfect for developers who want to leverage the computational power of the Portenta H7, without the need for video output or advanced security features.
The Portenta H7 Lite simultaneously runs high-level code and real-time tasks thanks to its two processors. For example, it can execute Arduino-compiled and MicroPython code at the same time, and have the two cores communicate with one another.
Key benefits include:
- Dual Core - Two best-in-class processors in one, running parallel tasks
- AI on the edge - So powerful it can run AI state machines
- Customization - The board is highly customizable in volumes
- High-level programming language support (Micropython)
The Portenta H7 Lite offers twofold functionality: it can run either like any other embedded microcontroller board, or as the main processor of an embedded computer.
For example, use the Portenta Vision Shield to transform your H7 Lite into an industrial camera capable of performing real-time machine learning algorithms on live video feeds. As the H7 Lite can easily run processes created with TensorFlow™ Lite, you could have one of the cores computing a computer vision algorithm on the fly, while the other carries out low-level operations like controlling a motor or acting as a user interface.
Portenta is the go-to family when performance is key, and the H7 Lite is no exception. We can already envision it as part of a wide range of solutions, including:
- High-end industrial machinery
- Laboratory equipment
- Computer vision
- PLCs
- Robotics controllers
- Mission-critical devices
- High-speed booting computation (ms)
Two Parallel Cores
The Portenta H7 Lite’s main processor is the STM32H747 dual core including a Cortex® M7 running at 480 MHz and a Cortex® M4 running at 240 MHz. The two cores communicate via a Remote Procedure Call mechanism that allows calling functions on the other processor seamlessly. Both processors share all the in-chip peripherals and can run:
- Arduino sketches on top of the Arm® Mbed™ OS
- Native Mbed™ applications
- MicroPython / JavaScript via an interpreter
- TensorFlow™ Lite
A New Standard for Pinouts
The Portenta family adds two 80-pin high-density connectors at the bottom of the board. This ensures scalability for a wide range of applications: simply upgrade your Portenta board to the one suiting your needs.
USB-C® Multipurpose Connector
The board’s programming connector is a USB-C port that can also be used to power the board, as a USB Hub, or to deliver power to OTG connected devices.
Arduino IoT Cloud Compatible
Use your MKR board on Arduino's IoT Cloud, a simple and fast way to ensure secure communication for all of your connected Things.
Need Help?
Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. If you need any help with your board, please get in touch with the official Arduino User Support as explained in our Contact Us page.
Warranty
You can find your board warranty information here.
Tech specs
Microcontroller |
STM32H747XI dual Cortex®-M7+M4 32bit low power Arm® MCU (datasheet) |
Secure Element (default) |
Microchip ATECC608 |
Board Power Supply (USB/VIN) |
5V |
Supported Battery |
Li-Po Single Cell, 3.7V, 700mAh Minimum (integrated charger) |
Circuit Operating Voltage |
3.3V |
Current Consumption |
2.95 μA in Standby mode (Backup SRAM OFF, RTC/LSE ON) |
Timers |
22x timers and watchdogs |
UART |
4x ports (2 with flow control) |
Ethernet PHY |
10 / 100 Mbps (through expansion port only) |
SD Card |
Interface for SD Card connector (through expansion port only) |
Operational Temperature |
-40 °C to +85 °C |
MKR Headers |
Use any of the existing industrial MKR shields on it |
High-density Connectors |
Two 80 pin connectors will expose all of the board's peripherals to other devices |
Camera Interface |
8-bit, up to 80 MHz |
ADC |
3× ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS) |
DAC |
2× 12-bit DAC (1 MHz) available, only one is accessible by the user through the external A6 pin |
USB-C |
Host / Device, High / Full Speed, Power delivery |
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
Learn more
Get Inspired

Debug your C33 with few steps

Single-board computers (SBCs) are amazing mini powerhouses capable of nearly anything. The undisputed royalty of SBC form factors is our friend, the Raspberry Pi® Model B. An entire ecosystem of expansions, properly called HATs, has formed around its iconic 40-pin double-row header. Today, we are introducing the ultimate mash-up, combining the worlds of SBC and MCU with the newest addition to our Portenta range: the Portenta Hat Carrier. Now available from distributors (Mouser, DigiKey, RS Components) and our online Store, the Portenta Hat Carrier is a reliable and robust carrier that transforms your Portenta system-on-module into an industrial platform compatible with Raspberry Pi HATs, ready for a variety of solutions from workbench prototyping to field applications in the most demanding industrial settings. The Portenta Hat Carrier is specifically designed for the requirements of professionals using Raspberry Pi technology in commercial solutions. With the Portenta Hat Carrier’s modular interface, you can take any Arduino Pro Portenta X8, Portenta H7 or Portenta C33 and add easy access to multiple peripherals – including any Raspberry Pi HAT compatible with the Model B 40-pin header, Ethernet, microSD, and USB. To further simplify commercial applications, the Portenta Hat Carrier features an onboard CAN transceiver, an additional 8x analog I/Os and a PWM fan connector. This ease of use will not come at the expense of your solutions’ reliability, thanks to debugging capabilities courtesy of dedicated JTAG pins. “Portenta Hat Carrier provides a unique bridge between the Arduino and Raspberry Pi ecosystems, offering professionals a modular platform for prototyping to full-fledged industrial applications,” said Massimo Banzi, Arduino’s co-founder, chairman and CMO. “We are excited to offer a product that answers our customers' requests and supports an ecosystem we admire.” Indeed, the Portenta Hat Carrier is great for prototyping and