Overview
Designed for industrial and smart agriculture applications, the Arduino Edge Control Enclosure Kit is the perfect companion for Arduino Edge Control. It provides the module with a sturdy case that protects it from the elements, dust, and accidental blows. It is IP40-certified and compatible with DIN rails, making it safe and easy to fit in any standard rack or cabinet.
On top of this, the Arduino Edge Control Enclosure Kit features a 2-row/16-character LCD display with white backlight and a programmable push button, so it can be customized by users to instantly visualize sensor data, such as weather conditions and soil parameters. Different data can be displayed at every push of the button, on the spot and in real time, without requiring connectivity.
Key benefits include:
- Sturdy and compact protective case for outdoor/industrial use
- Easy installation and organization in racks or cabinets
- IP40-certified protection
- LCD display to instantly check sensor data on location
- Customizable push button to view different data in rotation
- Monitor data even when the connection is unavailable or unreliable
Ready to get started with the Edge Control Enclosure Kit? Read the product datasheet, tutorials and documentation on Arduino Docs.
*The boards/shields are not included in the product: Pictures shown are for illustration purposes only.
Arduino Edge Control
The Edge Control is Arduino Pro’s remote monitoring and control solution, optimized for outdoor environments. Find out more.
Arduino IoT Cloud
Integrating with Arduino’s IoT Cloud is a simple and fast way to ensure secure communication for all of your connected Things.
TRY THE ARDUINO IOT CLOUD FOR FREE
Need Help?
Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. If you need any help with your board, please get in touch with the official Arduino User Support as explained in our Contact Us page.
Warranty
You can find your board warranty information here.
Tech specs
Interfaces |
|
Included components |
|
Dimensions | 110x90x60 mm |
Weight | 165 g |
Ingress Protection | IP40 |
Operating Temperatures | -40° C to +85° C (-40° F to 185°F) |
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Get Inspired
CapibaraZero: A multifunctional security and hacking tool designed to be an alternative of FlipperZero™
RS Components released the second video focused on the first steps with the Arduino Robot with Massimo Banzi, David Cuartielles and Xun Yang: In this video you will see where to find code examples on the IDE. The robot library comes with two folders named “learn” and “explore” with examples on how to use the software to program the top board – this is the board you will mainly interact with while the motor board runs its original firmware. One of the first examples of coding on the Arduino Robot is called “LOGO” which is very similar to an early educational programming language that controlled a virtual turtle moving across the screen with simple instructions. This time however, instead of having a small virtual turtle running on a screen, we have a robot that can respond to commands demonstrating a basic example of movement. “LOGO” invites users to interact with the robot using the keypad to tell the robot whether to move forwards/backwards or to turn left/right. The program can store a series of commands that will then be executed one at a time. Xun and David show users where to find the LOGO example and how to upload it to the robot's control board. You will notice that the robot's motors are disengaged when the USB cable is connected. The Arduino Robot can be pretty powerful and this feature prevents it from running away with your laptop! Since all motors are slightly different, users will have to configure the robot's movement using a different example called “Calibration”. Using a screwdriver on the trimmer on the bottom board, it is possible to balance the strength applied by each one of the wheels so that the robot moves straight when asked to. The video closes with an example of how to use a simple IR-receiver connected to one of the sensor inputs on the robot to control it using a small universal TV-remote. This program is also part of the basic list of examples in the library. Go and run with the first Arduino on wheels!