
Gravity: I2C Ozone Sensor (0-10ppm)
Module with an ozone detection sensor that performs measurements in the range of up to 10 ppm with a resolution of 0.01 ppm.
Overview
Gravity: I2C Ozone Sensor (0-10ppm) is based on electrochemical principles and it can measure the ambient O3 concentration accurately and conveniently. With high anti-interference ability, high stablility and high sensitivity, this arduino-compatible ozone sensor can be widely applied to fields like portable device, air quality monitoring device, disinfection cabinets and smart home.
This compact dfrobot ozone sensor supports I2C output, it is compatible with many mainboards like Arduino Uno, esp32, Raspberry Pi and so on. Its resolution can reach to 10ppb. It supports wide range input voltage: 3.3V to 5.5V.
Moreover, the lifetime is as long as 2 years. With simple Gravity interface and practical sample code, you can build your own ozone concentration monitor easily and conveniently.
Features:
- High sensitivity
- Low power consumption
- Excellent stability and anti-interference ability
- IIC Interface
- Temperature compensation, excellent linear output
- Long lifetime
- Compatible with both 3.3V and 5V micro-controllers
- Polarity protection
Tech specs
- Detection of Gases: Ozone
- Operating Voltage: 3.3 to 5.5V DC
- Output Signal: IIC output
- Measurement Range: 0 to 10ppm
- Resolution: 0.01ppm (10ppb)
- Preheat Time: 3 minutes
- Response Time: ≤90 seconds
- Recovery Time: ≤90 seconds
- Operating Temperature: -20℃ to 50℃
- Operating Humidity: 15 to 95%RH (no condensation)
- Storage Temperature: -20℃ to 50℃
- Lifetime: >2 years (in the air)
- Board Dimension: 1.06" x 1.46" / 27mm x 37mm
Get Inspired

Just a simple and enjoyable autonomous greenhouse

Humans are animals and like all animals, we evolved in mostly outdoor conditions where the air is nice and fresh. But modern society keeps most of us indoors the vast majority of the time, which could have negative health effects. There are many potential hazards, including a lack of sunlight and psychological effects, but CO2 may pose a more tangible risk. To keep tabs on that risk within classrooms, a team from Polytech Sorbonne built this small CO2 monitor. This CO2 monitor performs two functions: it shows anyone nearby the CO2 levels in the area and it uploads that data over LoRaWAN to a central hub that can track the levels across many locations. A school could, for example, put one of these CO2 monitors in every classroom. An administrator could then see the CO2 levels in every room in real time, along with historical records. That would alert them to immediate dangers and to long term trends. At the heart of this CO2 monitor is an Arduino MKR WAN 1310 development board, which has built-in LoRa® connectivity. It uses a Seeed Studio Grove CO2, temperature, and humidity sensor to monitor local conditions. To keep power consumption to a minimum, the data displays on an e-ink screen and an Adafruit TPL5110 timer only wakes the device up every ten minutes for an update. Power comes from a lithium-ion battery pack, with a DFRobot solar charger topping up the juice. It uploads data through The Things Network to a PlatformIO web interface. An Edge Impulse machine learning model detects anomalies, so it can sound a warning even if nobody is watching. The enclosure is 3D-printable.