Overview
Measure, read and visualize the temperature, humidity, pressure, light and UV levels. This bundle with accompanying online project shows you how to set-up and read environmental data from the sensors on the Arduino MKR ENV Shield and visualize that data in an Arduino IoT Cloud Dashboard.
Contains the core products to make the Environmental Data on IoT Cloud Project
- 1 x Arduino MKR WIFI 1010 board to manage the calculations and communications thanks to its SAMD21 core and the U-BLOX NINA-W10 module for wi-fi connection.
- 1 x ARDUINO MKR Enviromental Shield rev2 that provides environmental sensors to measure temperature, humidity, pressure, light and UV levels.
Arduino IoT Cloud Compatible
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Get Inspired
Control the air/fuel mixture for a better fuel economy of a engine with a Arduino Nano.
As climate change continues to worsen, events such as heavy rains, hurricanes, and atmospheric rivers have only intensified, and with them, large amounts of flooding that pose serious risks to life and property. Jude Pullen and Pete Milne, therefore, have responded by creating a "physical app" that can show the potential for flood dangers in real-time with sound, lights, and an ePaper display. The Arduino Nano 33 IoT powering the Flood Alert device sources its data from the UK Environmental Agency’s API to get statistics on an area’s latest risk level along with an extended description of what to expect. Initially, the electronics were mounted to a breadboard and housed within a cardboard enclosure, but a later revision moved everything to soldered protoboard, a 3D-printed case, and even added a piezoelectric buzzer to generate audible alerts. For now, the Flood Alert’s sole source of data is the aforementioned API, but Pullen hopes to expand his potential data sources to include “hyper-local” sensors that can all be aggregated and analyzed to give a much more precise view of flooding in a smaller area. To learn more about Flood Alert and its myriad applications to local communities and beyond, check out the original long read article’ is available at DesignSpark.