Nano Screw Terminal Adapter
A robust and solderless solution for your next project. Perfect for long standing installations using any Arduino Nano board.
Overview
Build robust projects with secure and long lasting connection without the need of any soldering combining the Nano Screw Terminal Adapter and any of the boards from the Arduino Nano family.
Perfect for your next IoT project
Build Arduino Nano board based projects with secure connections using screw terminals and in case you need to add some extra components, you can use the prototyping area.
Tech specs
Board |
Nano Screw Terminal Adapter |
Connectors |
|
Prototyping Area |
9x8 grid (2.54 mm pitch) |
Dimensions |
|
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
Learn more
Get Inspired
Control the air/fuel mixture for a better fuel economy of a engine with a Arduino Nano.
As climate change continues to worsen, events such as heavy rains, hurricanes, and atmospheric rivers have only intensified, and with them, large amounts of flooding that pose serious risks to life and property. Jude Pullen and Pete Milne, therefore, have responded by creating a "physical app" that can show the potential for flood dangers in real-time with sound, lights, and an ePaper display. The Arduino Nano 33 IoT powering the Flood Alert device sources its data from the UK Environmental Agency’s API to get statistics on an area’s latest risk level along with an extended description of what to expect. Initially, the electronics were mounted to a breadboard and housed within a cardboard enclosure, but a later revision moved everything to soldered protoboard, a 3D-printed case, and even added a piezoelectric buzzer to generate audible alerts. For now, the Flood Alert’s sole source of data is the aforementioned API, but Pullen hopes to expand his potential data sources to include “hyper-local” sensors that can all be aggregated and analyzed to give a much more precise view of flooding in a smaller area. To learn more about Flood Alert and its myriad applications to local communities and beyond, check out the original long read article’ is available at DesignSpark.