
Overview
If you are experimenting with monitoring fleets, high-altitude scientific experiments, or any kind of project requiring localization of devices, the MKR GPS Shield will offer you the functionality you need, and it is plug 'n' play!
The MKR GPS Shield is based on the u-blox SAM-M8Q GNSS (Global Navigation Satellite System) module. It is meant to be used on top of boards in the MKR format, but thanks to its Eslov connector, it is also possible to hook it up to any board having that kind of connector available using a cable.
This module is designed to operate with different positioning services concurrently. It receives and processes the signals from GPS, GLONASS, and Galileo. It interfaces with Arduino boards either through a serial interface, when used with headers and put on top of a MKR board, or through an I2C interface and a dedicated ESLOV cable supplied as bundle.
Configuration Commands and Backup
The GPS module can be configured via special commands. We have included an on-board battery holder for the system to keep the configurations made via software. This can be convenient when e.g. changing the operation mode of the GPS to 1g, something common in high altitude experiments, where specific settings away from the default ones are needed for the device.
Another example is the use of Galileo's localization option, which is disabled by default, but can be enabled by sending a configuration message (UBXCFG-GNSS) to the receiver. You can find a detailed description of all of the commands in the protocol here.
Getting Started
Our Arduino_MKRGPS library handles the two different interfaces and offer a consistent set of APIs designed for a full usage of the GPS acquired information
Need Help?
Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. Need any help with your board please get in touch with the official Arduino User Support as explained in our Contact Us page.
Warranty
You can find here your board warranty information.
Tech specs
GNSS receiver | u-blox module SAM-M8Q (datasheet) |
Connectors | MKR headers / Eslov |
Input Voltage | 3.3V |
Operating Voltage | 3.3V |
Backup battery | CR1216 |
Communication | Serial / I2C / DCC |
Length | 45 mm |
Width | 25 mm |
Weight | 14 gr. |
Conformities
Resources for Safety and Products
Manufacturer Information
The production information includes the address and related details of the product manufacturer.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/
Responsible Person in the EU
An EU-based economic operator who ensures the product's compliance with the required regulations.
Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc
Documentation
OSH: Schematics
The Arduino MKR GPS Shield is open-source hardware! You can build your own board using the following files:
EAGLE FILES IN .ZIP SCHEMATICS IN .PDF
Additional I2C Port
The MKR GPS Shield has an additional connector meant as an extension of the I2C bus. It's a small form factor 5-pin connector with 1.0 mm pitch. The mechanical details of the connector can be found in the connector's datasheet.
The I2C port, also referred to as the Eslov self-identification port within Arduino, comes with: SDA, SCL, GND, +5V, and an extra digital pin meant to send an alarm to the otherwise plain I2C devices connected to it. The pinout is shown in the following image:
If you are interested in designing your own modules for Arduino boards with this expansion port, the connector we suggest using is code: SHR-05V-S-B, also in the picture.
Learn more
Get Inspired
A LEGO compatible case for the Arduino Micro to be used together with the Arduino based LEGO power function IR-receiver.
The Arduino Wifi Shield is finally here! We've been working for a while on this new wifi shield for Arduino that is quite different from what you can find already on the market. Instead of just getting the usual pre-made module we decided to build a product that would encourage hacking and modifications so we decided to use an AVR32 processor running an open source version of TCP/IP and the WIFI software stack. The Arduino communicates over SPI with the AVR32 and this in turn controls the WIFI module, an HDG104 from H&D Wireless. Following the Arduino tradition the full software stack running on the AVR32 is released as open source as well as the Arduino library that controls the shield. Having the full source for the software stack allows adding more complex protocols directly on the AVR32 without using the limited code space of the atmega328 on the Arduino. On top of this, skilled C developers can re-program the shield to operate as a standalone device without the need of an Arduino connected to it. Since we expect that there will be amazing new features created by the community we made updating its firmware very easy, just connect a usb cable to the shield. We believe this opens up to a lot of hacking potential. Here are some of its features: Connection via: 802.11b/g networks Encryption types: WEP and WPA2 Persoanl Connection with Arduino on SPI port on-board micro SD slot ICSP headers FTDI connection for serial debugging of WiFi shield Mini-USB for updating WiFi shield firmware HDG104 Wireless LAN 802.11b/g System in-Package Atmega 32UC3 32bit microcontroller open source firmware. For more details see the product page and on the wifi-shield on the Arduino Store. We hope you will enjoy creating with the new member of the Arduino family.