Skip to content
Free shipping on orders over 50€ to Austria, France, Germany, Italy, and Spain!
Free shipping on orders over 50€ to Austria, France, Germany, Italy, and Spain!

    Your cart is empty

    Time to spark some excitement 🛒⚡

Taxes and shipping calculated at checkout
Subtotal €0,00
Cloud Compatible

Arduino MKR WiFi 1010

SKU ABX00023 Barcode 7630049200258 Show more
Original price €0
Original price €40,87 - Original price €40,87
Original price
Current price €40,87
€40,87 - €40,87
Current price €40,87
VAT included

The basic Arduino board to build secure WiFi and Bluetooth® applications.

Overview

The Arduino MKR WiFi 1010 is the easiest point of entry to basic IoT and pico-network application design. Whether you are looking at building a sensor network connected to your office or home router, orif you want to create a Bluetooth® Low Energy device sending data to a cellphone, the MKR WiFi 1010 is your one-stop-solution for many of the basic IoT application scenarios.

See what Massimo Banzi, Arduino Co-founder, has to say about this board in the following video.

The board's main processor is a low power Arm® Cortex®-M0 32-bit SAMD21, like in the other boards within the Arduino MKR family. The WiFi and Bluetooth® connectivity is performed with a module from u-blox, the NINA-W10, a low power chipset operating in the 2.4GHz range. On top of those, secure communication is ensured through the Microchip® ECC508 crypto chip. Besides that, you can find a battery charger, and a directional RGB LED on-board.

Arduino IoT Cloud Compatible

Use your MKR board on Arduino's IoT Cloud, a simple and fast way to ensure secure communication for all of your connected Things.

TRY THE ARDUINO IOT CLOUD FOR FREE

Official Arduino WiFi Library

At Arduino we have made connecting to a WiFi network as easy as getting an LED to blink. You can get your board to connect to any kind of existing WiFi network, or use it to create your own Arduino Access Point. The specific set of examples we provide for the MKR WiFi 1010 can be consulted at the WiFiNINA library reference page.

Compatible with other Cloud Services

It is also possible to connect your board to different Cloud services, Arduino's own among others. Here some examples on how to get the MKR WiFi 1010 to connect to:

  • Blynk: a simple project from our community connecting to Blynk to operate your board from a phone with little code
  • IFTTT: see an in-depth case of building a smart plug connected to IFTTT
  • AWS IoT Core: we made this example on how to connect to Amazon Web Services
  • Azure: visit this github repository explaining how to connect a temperature sensor to Azure's Cloud
  • Firebase: you want to connect to Google's Firebase, this Arduino library will show you how

Bluetooth® and Bluetooth® Low Energy

The communications chipset on the Nano 33 BLE Sense can be both a Bluetooth® Low Energy and Bluetooth® client and host device. Something pretty unique in the world of microcontroller platforms. If you want to see how easy it is to create a Bluetooth® central or a peripheral device, explore the examples at our ArduinoBLE library.

We Make it Open for you to Hack Along

The MKR WiFi 1010 is a dual processor device that invites for experimentation. Hacking the WiFiNINA module allows you to, for example, make use of both WiFi and Bluetooth® / Bluetooth® Low Energy at once on the board. Yet another possibility is having a super-lightweight version of linux running on the module, while the main microcontroller controls low level devices like motors, or screens. These experimental techniques, require advanced hacking on your side. They are possible via modifying the module's firmware that you can find at our github repositories.

BEWARE: this kind of hacking breaks the certification of your WiFiNINA module, do it at your own risk.

Battery Power

Its USB port can be used to supply power (5V) to the board. It has a Li-Po charging circuit that allows the Arduino MKR WiFi 1010 to run on battery power or an external 5 volt source, charging the Li-Po battery while running on external power. Switching from one source to the other is done automatically.

Related Boards

If you are looking at upgrading from previous Arduino designs, or if you are just interested in boards with similar functionality, at Arduino you can find:

  • Arduino Uno WiFi rev2: the education version of the MKR WiFi 1010, with USB-B connector and embedded accelerometer. Read more here.
  • Nano 33 IoT: if you need an even smaller form factor, this board sacrifices the battery connector, but the basic functionality is essentially the same. Visit its product page here.
  • MKR WiFi 1000: can only run WiFi applications, as it includes a different chipset than the MKR WiFi 1010. Read more about it here.

Getting Started

The Getting Started section contains all the information you need to configure your board, use the Arduino Software (IDE), and start tinkering with coding and electronics.

Need Help?

Check the Arduino Forum for questions about the Arduino Language, or how to make your own Projects with Arduino. Need any help with your board please get in touch with the official Arduino User Support as explained in our Contact Us page.

Warranty

You can find here your board warranty information.


Tech specs

The Arduino MKR WiFi 1010 is based on the SAMD21 microcontroller.

Microcontroller SAMD21 Cortex®-M0+ 32bit low power ARM® MCU (datasheet)
Radio module u-blox NINA-W102 (datasheet)
Board Power Supply (USB/VIN) 5V
Secure Element ATECC508 (datasheet)
Supported Battery Li-Po Single Cell, 3.7V, 1024mAh Minimum
Circuit Operating Voltage 3.3V
Digital I/O Pins 8
PWM Pins 13 (0 .. 8, 10, 12, 18 / A3, 19 / A4)
UART 1
SPI 1
I2C 1
Analog Input Pins 7 (ADC 8/10/12 bit)
Analog Output Pins 1 (DAC 10 bit)
External Interrupts 10 (0, 1, 4, 5, 6, 7, 8,9, 16 / A1, 17 / A2)
DC Current per I/O Pin 7 mA
CPU Flash Memory 256 KB (internal)
SRAM 32 KB
EEPROM no
Clock Speed 32.768 kHz (RTC), 48 MHz
LED_BUILTIN 6
USB Full-Speed USB Device and embedded Host
Length 61.5 mm
Width 25 mm
Weight 32 gr.

Conformities

The following Declarations of Conformities have been granted for this board:
ISED/IC
MIC
RCM
RoHS
CE
FCC
UKCA
REACH
WEEE
For any further information about our certifications please visit docs.arduino.cc/certifications

Resources for Safety and Products

Manufacturer Information

The production information includes the address and related details of the product manufacturer.

Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
https://www.arduino.cc/ 

Responsible Person in the EU

An EU-based economic operator who ensures the product's compliance with the required regulations.

Arduino S.r.l.
Via Andrea Appiani, 25
Monza, MB, IT, 20900
Phone: +39 0113157477
Email: support@arduino.cc

 

Documentation

OSH: Schematics

The MKR WiFi 1010 is open-source hardware! You can build your own board using the following files:

EAGLE FILES IN .ZIP SCHEMATICS IN .PDFDATASHEET IN .PDFFRITZING IN .FZPZ

Pinout Diagram

Download the full pinout diagram as PDF here.

Interactive Board Viewer

 

Additional I2C Port

The MKR WiFi 1010 has an additional connector meant as an extension of the I2C bus. It's a small form factor 5-pin connector with 1.0 mm pitch. The mechanical details of the connector can be found in the connector's datasheet.

The I2C port, also referred to as the Eslov self-identification port within Arduino, comes with: SDA, SCL, GND, +5V, and an extra digital pin meant to send an alarm to the otherwise plain I2C devices connected to it. The pinout is shown in the following image:

If you are interested in designing your own modules for Arduino boards with this expansion port, the connector we suggest using is code: SHR-05V-S-B, also in the picture.

Get Inspired

BLOG
Machine vision with low-cost camera modules
Machine vision with low-cost camera modules
June 24, 2020

If you’re interested in embedded machine learning (TinyML) on the Arduino Nano 33 BLE Sense, you’ll have found a ton of on-board sensors — digital microphone, accelerometer, gyro, magnetometer, light, proximity, temperature, humidity and color — but realized that for vision you need to attach an external camera. In this article, we will show you how to get image data from a low-cost VGA camera module. We’ll be using the Arduino_OVD767x library to make the software side of things simpler. Hardware setup To get started, you will need: Arduino Nano 33 BLE Sense with headersOV7670 CMOS VGA Camera Module 16x female to female jumper wiresA microUSB cable to connect to your Arduino You can of course get a board without headers and solder instead, if that's your preference. The one downside to this setup is that (in module form) there are a lot of jumpers to connect. It’s not hard but you need to take care to connect the right cables at either end. You can use tape to secure the wires once things are done, lest one comes loose. You need to connect the wires as follows: Software setup First, install the Arduino IDE or register for Arduino Create tools. Once you install and open your environment, the camera library is available in the library manager. Install the Arduino IDE or register for Arduino CreateTools > Manage Libraries and search for the OV767 libraryPress the Install button Now, we will use the example sketch to test the cables are connected correctly: Examples > Arduino_OV767X > CameraCaptureRawBytesUncomment (remove the //) from line 48 to display a test pattern Compile and upload to your board Your Arduino is now outputting raw image binary over serial. To view this as an image we’ve included a special application to view the image output from the camera using Processing. Processing is a simple programming environment that was created by graduate students at MIT Media Lab to make

read more

FAQs

Batteries, Pins and board LEDs

  • Battery capacity: rechargeable Li-Ion, or Li-Po. Please make sure the battery connector suits your battery.
  • Battery connector: The connector is of type JST S2B-PH-SM4-TB(LF)(SN). Mating connector is JST PHR-2.
  • Vin: This pin can be used to power the board with a regulated 5V source. If the power is fed through this pin, the USB power source is disconnected. This is the only way you can supply 5v (range is 5V to maximum 6V) to the board not using USB. This pin is an INPUT.
  • 5V: This pin outputs 5V from the board when powered from the USB connector or from the VIN pin of the board. It is unregulated and the voltage is taken directly from the inputs.
  • VCC: This pin outputs 3.3V through the on-board voltage regulator. This voltage is 3.3V if USB or VIN is used and equal to the series of the two batteries when they are used
  • LED ON: This LED is connected to the 5V input from either USB or VIN. It is not connected to the battery power, thus minimizing the impact on battery usage. It is therefore normal to have the board properly running on battery power without the LED ON being lit.
  • Onboard LED: On MKR WAN 1010 the onboard LED is connected to D6.

Compare products

0 of 3 items selected

Select first item to compare

Select second item to compare

Select third item to compare

Compare